Expert Insights

I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. 

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality.

Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.

In the lab it comes out in a variety of ways.  It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured.  And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there.

The influence has been to stand back and let the students do the learning, rather than for the teacher to be barnstorming them with teaching.

The difference between chemistry as it happens in a flask, chemistry as we show it on paper or in a textbook and helping students to understand that these are representations and they're conceptual frameworks that we use to understand our discipline and so helping them put those two pieces together.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science.  But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was.  They didn’t understand what I meant by compare and contrast or discuss or argue for this.  So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about?  What am I actually asking you to do?  What do you need to think about? And not assuming that they know how to write an essay.

I think we’ve all sat in lectures and gone, that was dreadful, so we learned quite a lot from understanding how not to do it as well as how actually to do it.  And of course the key is preparation and organisation..... whenever I go into a class knowing that I am beautifully organised, that gives you that extra confidence to project and to present, and you come away with that feeling that you know that the class has gone well and you’ve got the information across to the students in the way that you wanted.