Expert Insights

[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences.  Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test.  These are all forms of analytical chemistry.  So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences.  Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry.  The difficulty is of course to ensure that misconceptions don’t creep in.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality.  When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation.

I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality.

I know it's hard for them to 'suspend reality' and just accept a concept. They grasp for real life examples or metaphors which make sense to them. Students don't like the concept of something that can shift/change. They like one answer which is set and that's it, right or wrong - not 'shifts to the left/right'.

It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint.  But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves.

I think to get the students to straight away mark for somebody else what they’ve just done and then to mark or take part in the marking of two other versions of the same thing is really powerful.  So it’s not so much me directly finding out what they do and don’t understand but using methods by which they can diagnose for themselves.  I haven’t got this, she has, or yep I have got most of that, she hasn’t, and I can see where she went wrong.  Very powerful, very powerful indeed. 

I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on. 

The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life.

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

Pages