Expert Insights

I use a lot of eye contact. The people in the back row are not anonymous, you know.  Make sure you’re talking to them and make sure that you see them.

In the lab it comes out in a variety of ways.  It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured.  And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’.

So I think we just, I used to give them, perhaps, 10 minutes to work on a problem, now I probably only give them two or three minutes.  I find that concentrates them and prevents them just talking about the State of Origin or whatever it is that’s on their mind.  We just need to keep changing the activity, rather than have extended activities... we want them to chat, but I think human beings won’t sit and chat about quantum mechanics for more than two or three minutes, they’ll get onto what they want for lunch.  So it’s that balance.

The culture in the chemistry department was always lots and lots of content.  And that’s changed now because you don’t need it, because they can find it another way, but you’ve got to give them the framework to understand the content.

So the strategy is to reflect, to change things, to be flexible, to talk to them but not talk down to them, and certainly I would say to any young lecturer don’t be writing the lecture the night before. Know what your course is because then you can jump back and forth as you talk about something.  You can say yeah we talked about this a week ago or something like that, you know. Know what you’re going to talk about, the whole thing, because then you can put it all together as a package.

They struggle with the language of chemistry.  So we sort of need to teach them the process and how to work out how to do these things.  We know that their tendency is just to attempt to memorise reactions.  Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. 

We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science.  But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was.  They didn’t understand what I meant by compare and contrast or discuss or argue for this.  So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about?  What am I actually asking you to do?  What do you need to think about? And not assuming that they know how to write an essay.

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.