Expert Insights

When you think of things in terms of energy you can represent energy … energy can be modelled as a particle, as matter.  It can be modelled using waves and then trying to talk about how we would use each model as it's appropriate for a particular situation.  It's the sort of things we observe might dictate which model we use to explain it, by recognising that in each case there is another model but perhaps just not as useful.  So maybe it goes back to just trying to show that everything that we do is a model, every model has its upside and its downside and that we usually only use a model that’s as detailed as it needs to be for the particular concept that you're trying to get across.  If you want to get across a concept of a car to someone who has never seen a car you don't probably show them a Ferrari or a drag racing car.  Maybe you show them a Lego style block and we do the same thing with our scientific models as well.  I guess trying to get across that idea that this is the model that we're going to use but it can be a lot more complicated.  I don't want you to think it's as simple as this but it's appropriate under the circumstance.  So I guess I spend a lot of time talking about things as models when I'm talking about quantum mechanics.  Our treatment in the first year, which is where I cover it, a little bit of second year but I don't take a mathematical detail treatment of quantum mechanics.  Someone else does that, so I really bow to them. So most of mine is non-mathematical, just simple mathematics and mainly conceptual type of stuff.  I guess some of the things I try and do to illustrate the differences between the models and the way that we use them is to ask questions in class that might be postulated in such a way that you can't answer it if you're thinking about both models at the same time.  So the one I like is where I show say a 2s orbital and the probability distribution of that node in between.  I talk about things that … there's one briefly, this plum pudding model which they all laugh about.  When you look at this 2s model there is a probability and a high probability, relatively so, that the electron can be inside the nucleus, if you think about it in particle terms.  Then talk about the nodes and so on and how they arise in quantum mechanics and so on and then ask questions like if the electron can be here and here but it can never be here how does it get there?  ...  I try and get across maybe the bigger picture, everything we're going to do from this point on (because we do this fairly early in first year)  - everything is going to be a model.  Nothing is going to be right.  Nothing is going to be wrong. Nothing is going to be exactly the way it is.  Everything will be just a model. You'll hear us saying things like ‘this is how it is’ or ‘this is what's happening’.  But really you need to interpret that as ‘this is a model and this is how this model is used to explain this particular phenomenon.

I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality.

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

We all spend a certain amount of our class time going through definitions and jargon and getting students up to speed with the basic area and now that’s material which I take out of the class and put online and let students read and understand that in their own time before they come to the class.

I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality.  When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

Many years ago, lecturers only had one style, you know they just wrote on the blackboard, actual blackboard with chalk.  That was the only style.  They just talked... That’s all I knew so that was fine and so I thought, well I’ll just continue that and the students weren’t understanding what I was saying and explaining and I thought, oh hang on what’s going on here?  This is the way I was taught.  Come on, it should work.  So, yeah I think it would be good if someone told me that at the start, but as I said because I’d end up doing my Diploma of Education that opened my eyes to that and that’s when I started to utilise different strategies and I appreciate that not everyone is going to understand one way of, my teaching way.

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

The culture in the chemistry department was always lots and lots of content.  And that’s changed now because you don’t need it, because they can find it another way, but you’ve got to give them the framework to understand the content.

It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’.

Pages