Expert Insights

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.

The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life.

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences.  Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test.  These are all forms of analytical chemistry.  So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences.  Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry.  The difficulty is of course to ensure that misconceptions don’t creep in.

I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching.  Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing.

At the start of every class my standard thing was ‘can you see me, can you hear me, can you see the slide?’ I would always look up the back for someone to put their hand up and always I would never talk to the front row. I’d always talk middle and back row and if someone was talking in the back row I’d pick them up and say ‘hey you, be quiet’ and then they know that I’ve seen them.

So you’ve got to focus on the whole class not just the people at the front - the people at the back as well.  Because sometimes smart people sit at the back as well, not just the dummies who want to get out. You’ve got to make sure you know everyone in the class.  And the surprising thing is that most kids sit in the same place every lecture.

So you can actually recognise where they are and who they are.  You don’t know their names but there’s a pattern in the way they sit.  You’ve just got to be aware of that.  So the trick is to embrace the whole class with your - you know physically, just with your eyes and and the way you talk.  You know, when you wave your hands, wave it to the back row. Make sure they’re involved.

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

Pages