Expert Insights

I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching.  Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing.

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint.  But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves.

Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.

They struggle with the language of chemistry.  So we sort of need to teach them the process and how to work out how to do these things.  We know that their tendency is just to attempt to memorise reactions.  Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. 

So I think we just, I used to give them, perhaps, 10 minutes to work on a problem, now I probably only give them two or three minutes.  I find that concentrates them and prevents them just talking about the State of Origin or whatever it is that’s on their mind.  We just need to keep changing the activity, rather than have extended activities... we want them to chat, but I think human beings won’t sit and chat about quantum mechanics for more than two or three minutes, they’ll get onto what they want for lunch.  So it’s that balance.

Too often I think students and others think that analytical chemistry is just that measurement step.  When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve?  What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information.

At the start of every class my standard thing was ‘can you see me, can you hear me, can you see the slide?’ I would always look up the back for someone to put their hand up and always I would never talk to the front row. I’d always talk middle and back row and if someone was talking in the back row I’d pick them up and say ‘hey you, be quiet’ and then they know that I’ve seen them.

So you’ve got to focus on the whole class not just the people at the front - the people at the back as well.  Because sometimes smart people sit at the back as well, not just the dummies who want to get out. You’ve got to make sure you know everyone in the class.  And the surprising thing is that most kids sit in the same place every lecture.

So you can actually recognise where they are and who they are.  You don’t know their names but there’s a pattern in the way they sit.  You’ve just got to be aware of that.  So the trick is to embrace the whole class with your - you know physically, just with your eyes and and the way you talk.  You know, when you wave your hands, wave it to the back row. Make sure they’re involved.

So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer.  And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well.  So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

Pages