Expert Insights

A lot of it is from colleagues.  Conferences are fantastic.  You know, your chemical education conferences.  I do go to a lot of those.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

Try to show students that the fundamental form of matter is energy. Then that this can be represented as particles with mass or as waves (wave functions). Then try to show them that we use the model particle/wave that best helps us understand different phenomena. In class I often do this by asking questions about wave mechanics in particle terms. eg. If a 2s orbital has a node how can the electron pass accross it? Then explain to them the limitations and advantages of each approach.

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science.  But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was.  They didn’t understand what I meant by compare and contrast or discuss or argue for this.  So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about?  What am I actually asking you to do?  What do you need to think about? And not assuming that they know how to write an essay.

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions.  They have set questions on sheets that they work through in groups and the groups of three just get one set.  They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going.  In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that.

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.

Pages