Expert Insights

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

So you shouldn’t be rigid, you shouldn’t be rigid in what you’re going to do.  It’s always stunned me that people say you should know where you start a lecture and where you’re going to finish, and if you get to that point and you finish ten minutes early you then should just finish.  I’ve never worked on that principle.  I never know where I’m going to start because I never know where I’m going to finish, right.  So where I finished the lecture before is where I start the next day, I haven’t got a set content.  If a student asks me an interesting question and I get the feeling that they want to know that answer I’ll go off for five or ten minutes or three or four minutes answering it, and if I don’t get to the end of where I thought I was going to get to, too bad I’ll do it next time.  So you go with the flow, you don’t go with a rigid thing ‘I’ve got to get through these 15 slides today and if I don’t the world will end,’ because it won’t.

I don’t like to be in a position where I’m stood at the front talking for 50 minutes. I like to be a in a position where I’m engaging with students, where they’re engaging with each other, where there’s a buzz, where there’s things happening, and it’s an active environment.

Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.

It’s continuous learning.  I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’  So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.'  If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again.  Many students don’t see that there is a limited number of problems that can be asked on a certain topic.

Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.

But if you’re honest, they’ll be honest right.  And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them.  Say ‘oh look this was wrong, you know this is what it should be’.  So that’s important - to be honest, to be upfront.  Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

The influence has been to stand back and let the students do the learning, rather than for the teacher to be barnstorming them with teaching.

You're learning a new language as well as new concepts. There's lots of vocab, so terms like electrophile and nucleophile and many others. So learning the language, learning the code that we use, the curly arrow code, and then starting to apply that in half a dozen or a dozen or so different contexts, different reactions.

Pages