Expert Insights

So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides.  I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. 

I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals.  So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together.  For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score.

A lot of it is from colleagues.  Conferences are fantastic.  You know, your chemical education conferences.  I do go to a lot of those.

I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course.  For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material.  Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets.  So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced.

Try to show students that the fundamental form of matter is energy. Then that this can be represented as particles with mass or as waves (wave functions). Then try to show them that we use the model particle/wave that best helps us understand different phenomena. In class I often do this by asking questions about wave mechanics in particle terms. eg. If a 2s orbital has a node how can the electron pass accross it? Then explain to them the limitations and advantages of each approach.

The difference between chemistry as it happens in a flask, chemistry as we show it on paper or in a textbook and helping students to understand that these are representations and they're conceptual frameworks that we use to understand our discipline and so helping them put those two pieces together.

It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here.  If I say ‘think of a famous physicist’ you probably already have thought of three.  Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones.  You do the same thing with biologists.  If I say to think of a famous chemist … that's within chemistry circles, we can't do it.  We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea.  So for some reason … we've never … chemists have never been able to popularise our topic, our content.  We've never been able to make it exciting enough that someone who is not studying it still wants to know about it.  And so I do think we've got a bigger challenge, for whatever reason.  Maybe there's something about chemistry that makes it less enjoyable, I don’t know.  There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity.  You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein.  And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing.  I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue.  We teach them in third year to the remaining hard core people that are left. 

[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences.  Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test.  These are all forms of analytical chemistry.  So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences.  Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry.  The difficulty is of course to ensure that misconceptions don’t creep in.

But if you’re honest, they’ll be honest right.  And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them.  Say ‘oh look this was wrong, you know this is what it should be’.  So that’s important - to be honest, to be upfront.  Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience.

I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students.  It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry.

Pages