Expert Insights

I think personally the quicker the students can see that holistic approach to chemistry the better... Because that’s when they start to realise how cool it is.

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

In the lab it comes out in a variety of ways.  It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured.  And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

It’s continuous learning.  I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’  So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.'  If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again.  Many students don’t see that there is a limited number of problems that can be asked on a certain topic.

I have one slide where I'm first demonstrating how we use curly arrows and that shows an arrow going in a particular direction from a nucleophile to an electrophile and emphasising that the arrow shows electrons moving - so it's got to start from where they are.  There has to be some electrons there for them to move.  So the whole screen goes black and comes up with a little orange box of 'never do this' which is an arrow starting from an H+, which has no electrons. The dramatic emphasis that the whole room goes dark and then it's just up there.

So you shouldn’t be rigid, you shouldn’t be rigid in what you’re going to do.  It’s always stunned me that people say you should know where you start a lecture and where you’re going to finish, and if you get to that point and you finish ten minutes early you then should just finish.  I’ve never worked on that principle.  I never know where I’m going to start because I never know where I’m going to finish, right.  So where I finished the lecture before is where I start the next day, I haven’t got a set content.  If a student asks me an interesting question and I get the feeling that they want to know that answer I’ll go off for five or ten minutes or three or four minutes answering it, and if I don’t get to the end of where I thought I was going to get to, too bad I’ll do it next time.  So you go with the flow, you don’t go with a rigid thing ‘I’ve got to get through these 15 slides today and if I don’t the world will end,’ because it won’t.

Chemistry is a different language so I try to approach it that way by explaining the ideas behind symbols.

I use a lot of eye contact. The people in the back row are not anonymous, you know.  Make sure you’re talking to them and make sure that you see them.

Pages