Expert Insights

You could identify people and you use it in a constructive way.  But if you could show some identity, that you’re not a remote person up the front, that the big class is not anonymous, it just helps to break down that barrier.  And once they trust you and once they like coming, that solves a lot of other problems - behavioural problems, learning problems and so on.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality.  When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation.

They struggle with the language of chemistry.  So we sort of need to teach them the process and how to work out how to do these things.  We know that their tendency is just to attempt to memorise reactions.  Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. 

When you think of things in terms of energy you can represent energy … energy can be modelled as a particle, as matter.  It can be modelled using waves and then trying to talk about how we would use each model as it's appropriate for a particular situation.  It's the sort of things we observe might dictate which model we use to explain it, by recognising that in each case there is another model but perhaps just not as useful.  So maybe it goes back to just trying to show that everything that we do is a model, every model has its upside and its downside and that we usually only use a model that’s as detailed as it needs to be for the particular concept that you're trying to get across.  If you want to get across a concept of a car to someone who has never seen a car you don't probably show them a Ferrari or a drag racing car.  Maybe you show them a Lego style block and we do the same thing with our scientific models as well.  I guess trying to get across that idea that this is the model that we're going to use but it can be a lot more complicated.  I don't want you to think it's as simple as this but it's appropriate under the circumstance.  So I guess I spend a lot of time talking about things as models when I'm talking about quantum mechanics.  Our treatment in the first year, which is where I cover it, a little bit of second year but I don't take a mathematical detail treatment of quantum mechanics.  Someone else does that, so I really bow to them. So most of mine is non-mathematical, just simple mathematics and mainly conceptual type of stuff.  I guess some of the things I try and do to illustrate the differences between the models and the way that we use them is to ask questions in class that might be postulated in such a way that you can't answer it if you're thinking about both models at the same time.  So the one I like is where I show say a 2s orbital and the probability distribution of that node in between.  I talk about things that … there's one briefly, this plum pudding model which they all laugh about.  When you look at this 2s model there is a probability and a high probability, relatively so, that the electron can be inside the nucleus, if you think about it in particle terms.  Then talk about the nodes and so on and how they arise in quantum mechanics and so on and then ask questions like if the electron can be here and here but it can never be here how does it get there?  ...  I try and get across maybe the bigger picture, everything we're going to do from this point on (because we do this fairly early in first year)  - everything is going to be a model.  Nothing is going to be right.  Nothing is going to be wrong. Nothing is going to be exactly the way it is.  Everything will be just a model. You'll hear us saying things like ‘this is how it is’ or ‘this is what's happening’.  But really you need to interpret that as ‘this is a model and this is how this model is used to explain this particular phenomenon.

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

I don’t like to be in a position where I’m stood at the front talking for 50 minutes. I like to be a in a position where I’m engaging with students, where they’re engaging with each other, where there’s a buzz, where there’s things happening, and it’s an active environment.

It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here.  If I say ‘think of a famous physicist’ you probably already have thought of three.  Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones.  You do the same thing with biologists.  If I say to think of a famous chemist … that's within chemistry circles, we can't do it.  We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea.  So for some reason … we've never … chemists have never been able to popularise our topic, our content.  We've never been able to make it exciting enough that someone who is not studying it still wants to know about it.  And so I do think we've got a bigger challenge, for whatever reason.  Maybe there's something about chemistry that makes it less enjoyable, I don’t know.  There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity.  You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein.  And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing.  I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue.  We teach them in third year to the remaining hard core people that are left. 

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.